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1.0 Executive Summary 

1.1 Project objectives 

This project concerns the development of algorithms, software and machine learning models to identify naked lamb 

rack primals on an abattoir conveyor belt at chain speed. The automated identification of these primals has the 

potential to offer significant advantages to processors in terms of product reliability and reduced labor costs, and would 

additionally represent a strong foundation on which the development of related models and systems could be based 

for other applications relevant to meat processors. 

The scope of the research includes targeted data collection, data labelling, machine learning model development, 

algorithm design and development and system evaluation and testing, and was conducted in cooperation with 

Gundagai Meat Processors (GMP). The specific objectives addressed by this project are: 

◆ To produce a labelled dataset consisting of 30,000 images of naked lamb racks. 

◆ To develop a machine learning model that is able to identify a naked lamb rack on the GMP boning belt with 

99.9% accuracy at chain speed. 

◆ To develop a machine learning system that can alert a nearby user if the model is unsure, allowing for manual 

override. 

1.2 Data collection and labelling 

In order to develop a machine learning model to recognize objects, it is necessary to capture raw data (in this case: 

images of primals) and then label those data with relevant information (in this case: the locations and types of primals 

in the images) to build a high quality dataset which can be used for model training, analysis and evaluation. Data 

collection was carried out in two phases: 

1. In the initial phase, data was collected manually by human operators using both fixed and handheld cameras. 

2. In the second phase, with an initial model, software, and fixed camera hardware in place, automated heuristics 

were used to identify and record relevant data based on identified weaknesses in the in-development model, 

as part of an active learning regime. 

In both phases, the collected raw data were then subject to a four-part labelling process: 

1. The in-development machine learning model was used to make provisional object identifications in the images. 

2. Using a specialized computer vision annotation platform, human annotators familiar with lamb primals 

corrected the model’s output. 

3. These human-corrected labels were reviewed by a highly experienced member of the team to ensure the 

accuracy of the object identifications. 

4. Finally, some automated processes were carried out on the reviewed labels to render the data suitable for use 

in training the machine learning model. 
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1.3 Machine learning model development 

The machine learning model architecture chosen for the object identification task was YOLOv4, which is both highly 

accurate at object detection, and optimized to allow for real-time predictions. The process of model development 

involved data collection and labelling as described above, data augmentation to increase the effectiveness of training, 

and hyperparameter optimization for both accuracy and speed of prediction. 

1.4 Model output post-processing 

Aside from the development of the core machine learning model which is able to recognize primals within an image, 

the overall system also incorporates several algorithmic post-processing steps which are able to take advantage of 

the ability of the system to capture multiple images of a given primal across time and from different angles across 

several cameras in order to further increase the overall accuracy of primal identification. The primary post-processing 

algorithms applied to the raw machine learning predictions are as follows: 

1. An object tracking algorithm to track individual primals through time as they cross each individual camera’s 

field of view. 

2. A cross-camera matching algorithm to match detections of the same primal from different angles across 

multiple cameras at a given moment in time. 

3. An overall classification algorithm which uses the outputs of the machine learning model along with the 

temporal tracking and cross-camera matching information produced by the above algorithms to produce highly 

robust object classifications which do not depend solely on any single captured image. 

4. An object counting algorithm which uses the output of the overall classification algorithm to count the number 

of each type of primal passing the camera station. 

 

Although the counting of primals represents an additional degree of complexity beyond the formal scope of the project, 

a counting algorithm was included in the system both because of its utility in system evaluation, and as a demonstration 

of a potential application of the technologies and methods developed and employed in the project. 

1.5 System validation and evaluation 

While the initial project proposal included an intention to evaluate the system in by having a human evaluator monitor 

the system during operation in the plant in real-time, during the development of the project it became clear that it was 

not feasible for a human to accurately monitor up to six cameras and the belt itself to confirm the accuracy of the 

predictions given the rate at which primals appear on the belt. To solve this problem, a more sophisticated evaluation 

regime was developed, in which data was recorded at the system during plant operation to be played back later using 

specialized simulation software, allowing the human evaluator to review the system’s predictions in slow motion, 

frame-by-frame, or even by rewinding and replaying sections to ensure that they are able to accurately check the 

system’s predictions. Furthermore, the evaluations were based on the counts of primals generated by the system, 

which demands not only that the system correctly identify each primal, as required by the project specification, but that 

it is additionally able to ensure that each primal is counted exactly once. 
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1.6 Results and limitations 

For naked rack primals, the system was evaluated against captured data containing over 1000 individual naked racks 

captured over a week of operation, and the system was shown to have a 99.9% rate of accuracy at counting the racks 

in that dataset. Of the frames evaluated, there was a single naked rack that was obscured from view by all cameras, 

preventing an accurate count to occur. This was the only error for the model.  

1.7 Findings, recommendations and conclusions 

The success of this project provides strong evidence for the applicability of computer vision and machine learning 

techniques in the abattoir boning room, and we would recommend that further research and development be 

undertaken to bring these technologies to bear in further applications which have direct and specific benefit to 

processors. In our opinion, these technologies could have immediate value in the following areas: 

● Automatic Sorting: a machine learning/computer vision system could be developed to control mechanical 

systems such as belt diverters to enable automated sorting of meat cuts in certain situations. 

● Supply Chain Traceability: with some expansion of scope, potentially including more cameras and processing 

nodes, the technologies used in this project could be applied to the problem of boning room traceability to 

track an individual carcase as it is transformed into primals and individual cuts. 

● Quality Assurance: a machine learning/computer vision system could be developed to identify and count 

objects once boxed, and alert users to the presence of foreign objects 

 

Based on the results of this project, we conclude that machine learning and computer vision technologies can be 

employed in an abattoir environment to detect naked lamb rack primals with a high degree of accuracy, and further 

that these methods show strong promise in terms of applicability to boning room automation, analysis, and quality 

assurance tasks generally, with the potential to increase the reliability of abattoir processes and reduce labor costs. 

2.0 Introduction 

In the red meat industry a consistent product is key. The problem is there are a multitude of end-point products that 

can be delivered by a processor. Output from a single plant can be complex and diverse, with product specifications 

changing day-to-day to meet customer requirements. There is a certain level of skill required in identifying a piece of 

meat correctly and efficiently on the production line, and ensuring the product is meeting specifications, biosecurity 

and quality control measures. As the number of potential options for an object increases, so do the potential errors in 

classification. This is an issue in the red meat industry, as identification tasks such as packaging products and final 

checks for boxed meat are often delegated to unskilled labour, with the least experience in the red meat industry. This 

lack of skill and high rate of labour turnover often results in a high risk of human error occurring, disrupting work flow 

and having the potential to create quality and biosecurity issues for the processor. If products do not meet 

specifications, biosecurity requirements or are incorrectly packaged, there is the potential for reputational damage 

both domestically and internationally. If the wrong product is in the wrong box, the costs can be very high. 
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The aim of this project was to deliver a machine learning based computer vision system specifically designed to identify 

naked racks in Australian Abattoir boning rooms, helping to ensure the right product ends up in the right box. This 

development positively impacts the red meat industry because it proves that artificial intelligence algorithms can be 

used to successfully identify primals with extremely high accuracy, which reduces the risk of having incorrectly packed 

products. In addition, the machine learning model built at the GMP abattoir is solid enough that it can then act as a 

baseline for future models. This is because the model was trained with more than 30,000 images collected during 

different days and times from a variety of camera angles, which means that adapting this model for other similar 

processing plants might only require a short development iteration.  

A variety of data collection, data labelling, software development, algorithm design, statistical, and machine learning 

techniques were applied and tested to successfully identify specific cuts of meat. This artificial intelligence system has 

the capabilities and flexibility to be applied across a wide variety of use cases throughout processing plants of the red 

meat industry. The ability to capture images that are processed and analysed at chain speed will enable output to be 

used in real-time decision making. Unskilled labour requirements will be reduced, and a greater level of quality 

assurance and biosecurity guarantee will be achieved consistently and efficiently across the variety of end-point 

products manufactured by processors.  



 

8 

AMPC.COM.AU 

3.0 Project Objectives 

The objectives of this projects are outlined as follows: 

◆ To produce a labelled dataset consisting of 30,000 images of naked lamb racks. 

◆ To develop a machine learning model that is able to identify a naked lamb rack on the GMP boning belt with 

99.9% accuracy at chain speed. 

◆ To develop a machine learning system that can alert a nearby user if the model is unsure, allowing for manual 

override. 

4.0 Methodology 

3.1 Data collection 

3.1.1 Initial data collection 

Using a modular camera system prototype, images were collected in plant over a series of days. This system 

undertook initial testing with a simple software application and one Baumer camera for the capture of images at two 

predetermined locations in the abattoir. After assessing several viewpoints, camera settings, space for the mounted 

system, belt position, focal length, exposure and lighting conditions, one location on the boning belt was deemed 

suitable for the collection of naked lamb racks. These images were collected over a series of days in plant at the 

predetermined location on the boning belt, which allowed for different angles and types of naked racks to be captured. 

Both a handheld camera and a fixed camera system were used for the collection of images. See Appendix 1 for a 

sample of the initial images collected in the abattoir. 

3.1.2 Bulk data collection 

Using a more advanced version of the modular camera system that included a total of six cameras with different lens 

types and angles, the rest of the images were captured simultaneously from fixed mounting points over a series of 

months. See Appendix 2 for a sample of the new types of frames the new system was able to capture. 

In parallel to the bulk data collection step, images were uploaded to an interactive labelling platform and annotated 

with rectangular bounding boxes that locate and identify primals. These were then submitted for quality review to an 

experienced member of the team to ensure maximum quality and consistency. Each primal dataset was converted to 

a csv file that contains information about the images captured including the objects located in the frame and of its 

respective coordinates.  

3.2 Data labelling 

Collected images were manually labelled for primal identification using bounding boxes. These are rectangular boxes 

used to define the location of the target object. Bounding boxes are determined by the 𝑥 and 𝑦 axis coordinates in the 

upper-left corner and the 𝑥 and 𝑦 axis coordinates in the lower-right corner of the rectangle. They are represented by 
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two coordinates (xmin, ymin) and (xmax, ymax). One frame may contain multiple images of primals, referred to as 

objects in AI terms. Each object has its own object-class and bounding box ((xmin, ymin) and (xmax, ymax)), creating 

a filename that contains multiple, and sometimes overlapping bounding boxes.  

A Computer Vision tool was used to annotate images, as it provides an interactive user interface and allows easy 

tracking and reviewing of bounding box annotations. See Appendix 3 for sample images with bounding box annotations 

created in the Computer Vision tool. 

Once all the collected images were labelled, a quality review process was initiated. All labels were reviewed and 

corrected by a single member of the team with expertise in identifying differences between primals. This ensures the 

dataset is high quality and consistent. All labels were then combined to a final csv file that contains one row per object 

identified. Each row has one value for the following columns: 

a) Filename. E.g: gmp_20210930_202107.png 

b) Frame width and height. Eg: 768 * 768 

c) Object: E.g: ‘naked_rack’ 

d) Bounding box coordinates as xmin, ymin, xmax, ymax. E.g: 418.35, 131.13, 570.88, 216.76 

We are providing the csv file for naked lamb racks (naked_racks_final.csv). The spreadsheet contains a list of 30,000 

objects and 30,000 labels. See Appendix 5 for a sample of the csv.  

3.3 Improving data collection using active learning 

Active learning (AL) is a subfield of machine learning that focuses on the study of data sets with the goal of obtaining 

performance gains by actively selecting the most useful samples to be labeled.  In contrast to active learning, passive 

learning refers to when all data is given at once to the annotator (Ren et al., 2021). AL has important applications in 

the machine learning community as it is proven that proper selection of samples for training the model can reduce the 

probability of mistakenly predicting the response variable for an unknown explanatory variable (Hino 2020). 

Although this was not originally planned for the project, the active learning technique was implemented by continuously 

analysing the model’s top errors and creating potential error detection mechanisms for the camera system. This 

technique allowed us to achieve the project’s objectives ahead of schedule because it allowed us to maximise 

performance with limited human intervention. Data was captured by the camera system, fed into the machine learning 

model for predictions, and then analysed for error detection. The output of the analysis would suggest a couple of the 

scenarios where we thought the model was struggling that then would be visualised by a member of the field team 
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and confirmed as being model errors. The camera software system would then be updated to capture data in real-

time that could simulate a similar scenario.  

Figure 1: Active learning cycle implemented for this project. 

 

Figure 1 shows how data was collected in real-time, fed into the machine learning model for predictions, and then to 

error analysis. One or more frame scenarios were selected as a priority for data that replicated a similar scenario to 

be collected in the coming weeks.  

For example, after performing the first the data analysis on the model’s errors it became clear that for some scenarios 

the model detected an object more than once as being in more than one class in a given image. In order to update the 

model to avoid this type of error, it was necessary to obtain many samples of images for which the model makes such 

double-detections, annotate them with the correct classifications, and then train a new model version with the resulting 

image-annotation pairs. To achieve this, an automated heuristic was implemented to identify frames where two 

bounding boxes are closely aligned with each other (within a small tolerance), and then these frames were stored and 

prioritized for human annotation.  

While not all images gathered using heuristic methods necessarily produce the targeted type of error, careful design 

of the heuristic algorithms used to identify the images to store and prioritize allowed the automated production of sets 

of images with a high concentration of error-producing samples, and so by using this automated method of 

prioritization, we were able to rapidly and automatically target various identified error types for correction, allowing the 

model to be improved much more rapidly than if the images to be annotated were selected manually. 

Table 1 describes the various types of errors we identified during model development, along with a description of the 

heuristic algorithms used to identify, store and prioritize images for annotation to target each error type. 

Table 1: Types of errors identified during model development and heuristics used to prioritize images for annotation 

to target each error type. 
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Error Type Description Automated Heuristic Used 

Object is detected more than once as 
being in more than one class in a 
given image. 

 Checking for frames containing two or more bounding boxes that closely align 
(with a small tolerance). If two predicted bounding boxes overlap almost 
exactly, one of those predictions may be in error. 

An incorrect class is predicted for an 
object on a particular camera, or an 
object is not detected on a particular 
camera. 

 Multiple heuristics were used: 

1. Checking agreement between cameras as to the number of objects 
of each class within a specified region (with some tolerance) of each 
frame which views the same part of the belt. If cameras disagree, 
predictions for the image from the camera that is in the minority may 
contain an error. 

2. Using the geometric multi-camera object matching algorithm 
described in the section below to match objects between camera 
frames based on their position within the frames. If a single object is 
detected across multiple cameras, but some cameras disagree on the 
correct classification of an object, the prediction(s) from the camera(s) 
that are in the minority may be in error. 

Object is detected correctly in images 
from a particular camera, except for 
one frame in which it briefly receives 
an incorrect classification. 

 Checking pairs of consecutive frames for bounding boxes which are of 
different predicted classes, but which match closely in size and location. If this 
occurs, the object may have been incorrectly classified in one of the two 
frames. 

Object is detected, but the predicted 
class is known not to be present on 
the belt at time of detection. 

Checking all predicted classifications against a configurable list of object 
classes which are known a priori not to be physically present on the belt for a 
given recording session and location. 

Object is incorrectly classified by the 
model 

Checking all predictions from the model against a specified confidence 
threshold. Because a low confidence-value output from the model is indicative 
of high uncertainty in the classification, predictions with a very low 
corresponding confidence value may be in error. 

Objects are incorrectly classified or 
not detected due to occlusion by 
other objects. 

Checking number of detected objects present in each frame against a 
specified threshold. Images containing a high number of detected objects are 
more likely to cause the model to make errors due to occlusion than other 
images. 

Object is incorrectly classified due to 
distortion of fish-eye lens 

Checking number and position of detected objects in fish-eye camera images 
to find images where a single object is present in the higher-distortion edge 
regions of the image. These images are more likely to cause the model to 
make errors due to lens distortion than typical images, while also allowing 
rapid annotation as only the single object of interest is present in the frame. 
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3.4 Data cleaning and processing 

After successful collection of images of naked lamb racks and the production of prioritised labels in the form of 

bounding boxes, a final dataset for the primal was created. Prior to feeding that dataset into an initial Machine Learning 

(ML) algorithm, data cleaning and preprocessing was required to remove corrupt and irrelevant records, and to 

transform data into an appropriate ML format. The steps for data cleaning and processing that were applied 

programmatically using Python were:  

 

1. Adding empty labels for images where there is no primal. 

2. Enforcing consistency in labelling names. 

3. Clipping bounding boxes that fall outside the edges of the image 

4. Normalizing coordinates to allow easier re-scaling 

5. Resizing images and bounding boxes to fit model architecture.  

 

This process ensured only the highest quality data was used to train the models.  

3.5 Machine learning model development:  

3.5.1 Model selection  

The Computer Vision task required for this project is referred to as Object Detection in Artificial Intelligence terms. The 

developed model needs to be able to locate the presence of objects with a bounding box and predict the classes 

(naked rack, naked loin, and bagged rack) of the located objects in an image. Amongst the various models available 

to solve problems like this, You Only Look Once (YOLO) was selected as the preferred base architecture as it proves 

to be predicting faster than Region-Based Convolutional Neural Networks models like R-CNN, and more accurately 

than other single-shot models like Single Shot Detector (SSD) (Kim et  al., 2020). Multiple versions of YOLO 

architectures have been released, but the fourth version (YOLOv4) was specifically designed to produce extremely 

accurate results in real-time, which is why it was chosen for this project (Bochkovskiy et al., 2020) .  
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Figure 2: Comparison of the proposed v4 and other state-of-the-art object detectors. YOLOv4 runs twice faster 

than EfficientDet with comparable performance. Improves YOLOv3’s AP and FPS by 10% and 12%, respectively  
(Bochkovskiy et al., 2020). 

 

Figure 3: YOLOv4’s architecture for object detection (Bochkovskiy et al., 2020). 

 

For this project, YOLOv4’s architecture had to be modified to fit the requirements and trained from scratch on samples 

from the dataset delivered for the previous milestone.  
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3.5.2 Parameter configuration and hyperparameter tuning 

Hyperparameters are those parameters whose value controls the learning process of an algorithm.  In Machine 

learning, optimization or tuning is the process of selecting the best combination of hyperparameters that minimizes 

the predefined loss function on a validation dataset. The hyperparameters that achieved the best performance for the 

final model are the following ones: 

 

Table 2: Hyperparameters chosen to train the final model. 

batch subdivisions momentum decay learning rate burn in max batches policy steps 

64 16  0.949  0.0005  0.001  20000 98000 
80000, 

87000,93000 

 

 

Below there’s a summary of what each parameter represents (Redmon, 2016):  

◆ The subdivision parameter controls how many samples will fit into RAM (minibatch/subdivision = samples 

loaded simultaneously per pass).  

◆ Momentum refers to accumulation of movement, and it controls how much the history affects the further change 

of weights (optimizer).  

◆ The decay parameter is a weaker updating of the weights for typical features, it eliminates dysbalance in the 

dataset (optimizer). 

◆ The learning rate is the one used initially.  

◆ Burn_in is the number of iterations that the initial burn_in that will be processed for. 

◆ Max_batches is the number of iterations that the training will be processed for. 

◆ Policy is the method for changing learning rate: constant (by default). 

◆ Steps are the numbers of iterations at which  the learning rate will be multiplied by the scale factor. 

◆ Scales is the factor used to multiply learning rate. if policy=steps - f.e. if steps=8000,9000,12000, 

scales=.1,.1,.1 and the current iteration number is 10000 then current_learning_rate = learning_rate * scales[0] 

* scales[1] = 0.001 * 0.1 * 0.1 = 0.00001. 

3.5.3 Data augmentation  

Data augmentation is a common technique used in Machine Learning to increase the size and quality of samples by 

adding slightly modified copies of already existing data. This approach can help reduce overfitting, when a network 

learns to model the training data with a high variance, which can fail to fit future observations reliably. Augmentation 

procedures that were applied to this project include image rotation, shifting, cropping, resizing, blurring,scaling, and 

modifying saturation levels, exposure, and hue. The image augmentation algorithms that were used in this project to 

reduce overfitting had to be applied to both the images and its respective bounding boxes, which added another layer 

of complexity to the task as linear algebra had to be used to ensure bounding boxes were correctly modified. See 
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Appendix 4 for an example of before and after random cropping transformations used for data augmentation. After 

successful application of multiple data augmentation techniques, an improvement of up to 6pp was recorded for the 

model’s accuracy.  

3.5.4 Model size vs inference speed trade-off 

Although developing a model that can achieve 99.9% accuracy  is crucial to the success of this project, keeping up 

with the speed of the chain is as important as the model's quality. Building a very accurate system that is too slow to 

predict in real-time might not be of value to the plant. For that reason we performed an experimental analysis to select 

the ideal model size to maximize model’s accuracy without sacrificing speed. The goal of this analysis was to 

understand the impact that model size has on the algorithm performance. Model version 12 (v12) was trained on an 

image size of 768*768*3 while model version 13(v13) was trained on 416*416*3. Both models had the same train/eval 

split to ensure the mAP comparison is fair.  Results of the experiment can be seen below. Please note that mAP refers 

to the mean Average Precision (mAP) for all classes of primals on a frame by frame basis, and IoU refers to the 

Intersection Over Union that describes the extent of overlap between the predicted and the real bounding box. The 

greater the region of overlap, the greater the IOU. An IoU value of 1 indicates perfect overlap, whereas a 0 indicates 

no overlap.  

 

Table 3: Results of an experiment to compare object detection performance between two different model sizes. 

 

 Model 

Size 

Samples mAP@0.5 IoU Precision Recall F1 Score False 

Negative 

V12  768*768  5952  95.52  84.73 0.96 89 92 1942 

V13  416*416  5952  94.73  82.81 0.94 88 91 2179 

Difference 

(+pp) 
     0.79  1.92 2 1 1 -237 

Difference 

(+%) 
  0.83% 2.29% 2.11% 1.13% 1.09% -11.50% 

 

 

Regarding model performance by size, it is clear that a bigger size model is more accurate, as it is capable of providing 

improvements in Precision and IoU, and significantly reducing the number of FalseNegatives. On the other hand, the 

gains in model’s quality are not directly proportional to the losses in speed. Speed was measured in frames per second 
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(FPS), and as Figure 4 shows, a smaller image size allows the model to predict more frames per second. To find a 

balance between speed and accuracy, the final model size selected for this project was 608*608*3.  

 

Figure 4: Comparison of ML inference processing frame rate with six cameras vs size of model input image. 

3.6 Model output post-processing 

This section describes the various types of processing that the system uses to enrich and contextualize the output of 

the core machine learning model in order to improve overall accuracy and produce additional useful results. 

3.6.1 Cross-camera object matching 

Selection of approach 

While the core machine learning model developed for this project is able to detect and classify primals within a single 

image, the system itself incorporates multiple cameras which are in many cases able to simultaneously view the same 

primal. As such, if the system can determine which detections from different cameras correspond to the same actual 

object, then the accuracy of classification for that object can be improved, because incorporating predicted 

classifications from multiple images captured from different angles can significantly reduce the impact of single-frame 

errors. 

 

However, in order to match detected objects between cameras, some additional processing must be performed. There 

are a number of possible ways to approach this, but the choice of algorithm was informed by the limitations introduced 

by the intended application of the system: 

- Primals within a class tend to be visually similar to each other. This reduces the applicability of cross-camera object 

matching methods which rely on the visual appearance of objects in the calculation of predicted matches. 
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- The system is designed to be relocatable. This makes it less feasible to use methods which carefully measure the 

position and optical characteristics of the cameras to calculate the intrinsic and extrinsic camera parameters that would 

allow a direct theoretical mapping from real-world coordinates to pixel coordinates within each camera using a camera 

matrix, as these parameters would need to be re-measured each time a camera is moved or the system relocated. 

- The system is designed to be used in various abattoir environments and in close integration with running meat 

processing apparatus, which limits the practicality of methods which require a specialized calibration object to 

determine the relative position of each camera. Because there may be limited space, or because it may not be possible 

to stop operating plant systems, it may in some cases be difficult to introduce a calibration object into the view of all 

cameras. 

 

Given these concerns, the ideal cross-camera frame matching approach would be one that requires no special physical 

calibration, but which does not rely on the appearance of each individual object to match that object between cameras. 

While this could be achieved in numerous different ways, we chose to use a method which uses the outputs of the 

core machine learning model as landmarks to induce a direct geometric relationship between coordinates within each 

camera frame. This approach has the advantage of not requiring either explicit calibration, or the development and 

maintenance of a separate specialized machine learning model solely for cross-camera object matching. It does, 

however, require that the system be set up and left to gather data for several hours or days before it is able to learn 

enough information to start calculating reliable cross-camera object matches. 

 

Description of algorithm 

The cross-camera object matching algorithm developed for use in this project has two components: pre-calculation of 

frame-mapping information, and real-time use of the pre-calculated frame mappings to predict which detections across 

multiple cameras should be matched with each other. 

 

Pre-calculation of the frame mapping data is carried out as follows: 

1. The cameras are mounted securely and the system is left in place to collect images and make single-image 

detections of objects for some period of time. 

2. After a set number of frames have been collected, all of the classifications and bounding box coordinates 

produced by the machine-learning model are read from the database. 

3. Each camera’s frame area is divided into small rectangular cells, which will be the regions used for geometric 

matching. The size of the cells is a configurable parameter: if the cells are set to be smaller and more 

numerous, a greater degree of spatial precision will be possible, but more frames of data will be required to 

properly induce the relationships between the cells. 

4. For every pair of cameras 𝑖 and 𝑗, a four-dimensional array 𝐴(𝑖,𝑗)  is initialized to all zeros, with the four axes 

corresponding to the horizontal and vertical coordinates of the cells within the frame area of each camera, and 

the values at each coordinate intended to describe the degree of association between each pair of frame-area 

cells in terms of object centroids appearing in those cells. That is to say, once the below steps have been 

carried out, 𝐴(𝑖,𝑗)[𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗] should contain an estimate of the relative extent to which a detected object 

appearing in cell (𝑥𝑖 , 𝑦𝑖) in the frame area of camera 𝑖 is expected to correspond to the same physical object 
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as a detection found in each cell (𝑥𝐽 , 𝑦𝑗) in the frame area of camera 𝑗. 

5. For each pair of cameras 𝑖 and 𝑗, every pair of images from those cameras taken at the same moment in time 

is iterated over once for each class of objects, as follows: 

a. If either of the images contain more than some threshold number of objects of a particular object class, 

processing of the current pair of images using that class is skipped. The reason for this thresholding 

step is that (assuming that the model’s classifications are generally correct and that the two cameras’ 

views overlap in the relevant areas) in the case where there is only one object of a given class present 

in two different cameras at the same moment in time, those detections can be matched with each 

other unambiguously to induce a geometric relationship, but as the number of detections of that class 

increases, the number of ways in which they could potentially be matched into corresponding pairs 

increases combinatorially, so the information that can be extracted from those detections is 

significantly reduced. However, even if a pair of images is skipped for some class of objects because 

there are too many objects of that class, that same pair of images may be used with another class 

which has fewer objects present in the cameras’ views at that moment. 

b. If the images are not skipped for the current object class, the centroid coordinates for each object 

within each camera’s frame area are calculated, and the corresponding cells (𝑥𝑖 , 𝑦𝑖) and  (𝑥𝐽, 𝑦𝑗) within 

each frame area are identified. 

c. For each cell identified in this way, the corresponding value in the four-dimensional array  𝐴(𝑖,𝑗) for 

the current camera pair (i.e.  𝐴(𝑖,𝑗)[𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗]) is increased by 1 divided by the square root of the 

number of possible ways the object could be matched (i.e. if there is only one object across the two 

cameras, the single known-correct value is increased by 1, but with more objects, the value is split 

amongst the corresponding coordinates for each possible candidate matched pair). For a given 

camera pair, the same array 𝐴(𝑖,𝑗) is used for each object class, so the final values for each coordinate 

in  𝐴(𝑖,𝑗) may be composed of contributions from several object classes. 

6. Once this process is carried out for each pair of cameras and each object class, the cross-camera mappings 

are recorded to data storage as the arrays 𝐴(𝑖,𝑗) for each possible camera pair 𝑖 and 𝑗 (with 𝑖 ≠ 𝑗) 

7. Steps 2-6 are repeated periodically to update the mappings with newly-available geometric information from 

newly-captured frames. 

 

Figure 5 provides a visual representation of this pre-calculation process. The system was generally configured to 

schedule this occasional processing during known break times so as not to interfere with performance during active 

operation. 
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Figure 5: Illustration of a simple case for cross-camera mapping pre-calculation. Suppose that a single object is seen 

on both cameras 𝑖 and 𝑗, is assigned the same class by the ML model, and is the only object of that class appearing 

in those frames. If the object appears in grid cell (𝑥𝑖 , 𝑦𝑖) on camera  𝑖, and cell (𝑥𝐽, 𝑦𝑗) on camera 𝑗, this is taken as 

evidence of a relationship between those cells, and the corresponding value 𝐴(𝑖,𝑗)[𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗] is increased by 1 in the 

cross-camera map 𝐴(𝑖,𝑗) corresponding to this camera pair. 

Once the pre-calculated frame mapping data has been recorded, the system is then able to use the data to generate 

matches between objects during real-time operation. For each frame (at a particular moment in time, across all 

cameras), the process is as follows: 

1. For each detected object in each camera’s image for the current frame, the confidence value, classification 

and the centroid coordinates of the bounding box for that detection are extracted from the output of the core 

machine learning model. 

2. The product of the sets of detections for each camera is taken, to produce all possible candidate combinations 

of one detection from each camera which could potentially be matched with each other as corresponding to 

the same physical object. Additionally, all possible candidate combinations of detections from a subset of 

cameras are added, to account for situations in which an object is visible in some cameras but not in others. 

3. For each candidate combination of detections from multiple cameras, each pair of objects across two cameras 

is taken, and the ‘match score’ for that pair is obtained by looking up the corresponding value in the pre-

calculated array for that camera pair, from above. That is, for a pair of detected objects with centroid 

coordinates appearing in cells (𝑥𝑖 , 𝑦𝑖) and  (𝑥𝐽 , 𝑦𝑗) of the frame areas of cameras 𝑖 and 𝑗, the match score for 

that pair of detections is the value 𝐴(𝑖,𝑗)[𝑥𝑖 , 𝑦𝑖 , 𝑥𝑗 , 𝑦𝑗]. If any pair in the candidate combination has a match score 

lower than a certain configurable threshold, processing of that combination is skipped, to reduce computation 

time.  

4. For each candidate combination, a combined match score is calculated as follows: 

a. The average of the match scores for each pair in the combination is taken 

b. The average model confidence value of the detections in the combination is taken 

c. The average match score and average confidence are linearly combined with configurable scaling 
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coefficients to produce the unpenalized combined match score 

d. A penalty is applied for each camera that does not contribute a detection to the combination by  

e. multiplying the unpenalized match score by a configured coefficient between 0 and 1 for each missing 

camera. 

f. The resulting value is the combined match score for the entire candidate combination. 

5. All candidate combinations for which all component detections have the same object classification are ranked 

in descending order of combined match score, the highest-ranked candidate is taken as a confirmed match, 

and the system considers the component detections of that candidate to correspond to the same physical 

object. Those detections are removed from consideration and the process is repeated, with the next-highest 

ranked candidate combination that does not include any of the detections that have already been matched by 

higher-ranking candidate being taken as the next confirmed match. This continues until the process reaches 

a candidate which has a combined match score less than some specified minimum threshold. 

6. Step 5 is repeated, but this time additionally considering combinations for which not all component detections 

have the same classification, and excluding detections which are already part of a confirmed match from the 

first pass in Step 5. These matches may indicate classification errors by the model and are used for model 

error detection and model development. 

7. All of the confirmed matches from Steps 5 and 6 are recorded as the cross-camera object matches for the 

current frame, and, by construction, each detection will appear in at most one confirmed match set. 

 

Figure 6 shows an example of the output of this process for a particular frame across several cameras. The colored 

diamonds drawn around the centroids of each bounding box indicate the cross-camera match set that each object 

belongs to. 
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Figure 6: Illustration of cross-frame object matching. The colored diamonds surrounding the center of each object 
indicate which objects in other cameras it has been matched with: objects with green diamonds are matched with 
other objects with green diamonds, and similarly for yellow and cyan. Note that objects whose centers are outside 
the blue region in each frame are not processed by the ML model, and that two of the cameras are pointing in the 

opposite direction as the other two. 

3.6.2 Object tracker 

The machine learning algorithm developed for this project can predict a list of bounding boxes from an input image in 

real-time, but it can’t relate one frame to another through time. Although the object tracker was not a project objective, 

it is clear that the addition of a tracker that could combine predictions from all frames and find associations between 

objects through time brings a lot of value.  

 

An object tracker was developed to find associations between naked racks’ bounding boxes through time. The goal of 

this tracker is to identify the path that naked racks follow through the conveyor belt. The tracker was based on the 

Simple Online Realtime Tracker algorithm adapting the Hungarian Algorithm, also known as Kuhn Munkres algorithm, 

to find associations between objects from sequential frames, and the Kalman Filter to predict future positions based 

on current ones (Bewley et al., 2016). By combining the input of the YOLOv4 model with these two algorithms and 

adapting some parameters to fit this specific task, we’re able to accurately identify the track that naked racks follow 

though the conveyor belt in real-time. This then enables us to count the total number of objects that go through the 

conveyor belt.  
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3.6.3 Combined overall classification 

While the machine-learning model itself is able to produce highly-accurate classifications of objects using only a single 

image from a single camera, the accuracy of these classifications can be further improved using the outputs of the 

object tracking and cross-camera object matching algorithms by combining the model’s predicted classifications of the 

same object across multiple images across time and from multiple angles across different cameras. In this way, a 

classification error which occurs for a single image or even several images can be corrected by reference to other 

images of the same object, because the model’s single-image classification is correct in the vast majority of cases. 

For a given object detection in a given camera, the overall classification of the object using both intertemporal 

information from the object tracking system and and cross-camera matching information from the object matching 

system is obtained as follows: 

1. First, the object tracking system is used to find the corresponding track of previous detections of the same 

object in the same camera. 

2. For each of those previous detections (and the actual detection of interest), the frame matching system is 

used to find the corresponding detections in other cameras. 

3. For each of the corresponding detections in other cameras, the tracking system is used to identify the temporal 

track to which it belongs. 

4. For each other-camera track, and for each corresponding matched detection found in Step 2, a ‘track weight’ 

is assigned to the track based on the number of matched detections in that track, with tracks closer in time to 

the present contributing a higher value to the total track weight than tracks further away in time (this is because 

the tracking system is more reliable for detections made more recently to the current frame). The track weight 

represents the degree to which that track (in another camera) is expected to correspond with the original 

detection’s track (in the original camera). The track weight of the original detection’s track is assigned a 

configurable constant value. 

5. For each possible class that the object could belong to, a ‘class weight’ is initialized to zero. 

6. For each track that has a non-zero track weight, each detection in that track is iterated over. The model 

confidence of the detection, the track weight for the track to which the detection belongs, and a time penalty 

reflecting how much time has elapsed since the detection, are used to form a value which is then added to 

the accumulated class weight for that detection’s predicted object class. That is, each detection which is 

related to the original detection of interest by either intertemporal tracking or cross-camera matching 

contributes a vote towards the corresponding class weight value, and the weight of that vote is determined by 

the confidence of the detection, and the degree of relatedness to the original detection. 

7. The object class with the highest class weight after all relevant detections have contributed their values is 

selected as the combined overall classification of the object corresponding to the original detection, which 

may or may not be the same as the predicted classification of the original detection. 

Figure 7 shows a diagrammatic illustration of the overall combined classification process for a given detection. 
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Figure 7: Illustrative example of overall classification process using both cross-camera matching and temporal 
tracking. Although the detection at the center bottom is incorrectly classified (red square) if considered on its own, 
the overall counting system is able to use the cross-frame matching information to find detections at other times 

and from other cameras which are likely to be the same physical object which can be used to correct the 
classification. 

 
All of the red and blue squares are connected to the detection being classified by a path of orange dotted lines 

(cross-camera matches) and purple dotted lines (temporal tracks), and so each will contribute a weighted vote to 

the overall classification of the object. In this case, the incorrect detection (red) would be overridden, as the 

detections in the connected network are overwhelmingly correctly classified (blue), despite a missing detection and 

resulting lost track (2 frames ago on the left), and a missing cross-camera match (previous frame, to the right). 

Unrelated detections in the center camera are omitted for clarity. 

3.6.4 Counting mechanism 

To demonstrate and evaluate the capabilities of the camera system, in addition to producing classifications of objects 

appearing on the belt, the software was also equipped with the option to attempt to count the number of objects of 

each class passing by the camera station as the system operates. This adds another layer of complexity to the 

processing of the model outputs, as it not only requires that objects be correctly identified, but also requires that each 
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object is counted exactly once. The counting system comprises an algorithm that attempts to count objects seen by 

each camera individually, and a secondary algorithm that processes those single-camera counts to produce an overall 

count which attempts to correct for situations in which an object is not detected in a particular camera either due to 

occlusion by another object or due to the angle at which the object is seen. 

Prediction zone calibration 

To carry out object counting using the implemented method, it is necessary to first configure a ‘prediction zone’ within 

each camera’s frame. This is a defined area of the frame which all objects will pass through; when an object first enters 

the zone, the system attempts to count it. It is important for the overall multi-camera counting algorithm that the 

prediction zones within each camera frame are fairly closely aligned, in that objects entering the prediction zone in a 

particular camera should also enter the prediction zones in other cameras within a short period of time. To achieve 

this, the software includes two methods of prediction zone calibration: automatic and manual. 

Automatic calibration of the prediction zones involves placing a calibration object of a specific color on the belt in the 

target location. The system can then detect the region occupied by the calibration object in each camera’s frame area 

and store that region as the prediction zone for that camera. 

Manual calibration is achieved by interactively drawing the edge of the region with the computer mouse on a sample 

image taken from each camera. This requires some human judgement to ensure that the drawn regions are well-

aligned, but can be used in cases where it is not feasible to use the automatic calibration method, for example while 

the belt is running, and can also be used remotely when no user is physically present at the camera station. 

Figure 8 shows an example of calibrated prediction zones across multiple cameras. 
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Figure 8: Example of calibrated prediction zones across multiple cameras. The green regions are the prediction 
zones, and note that the naked rack near the center of the frame is either inside, just about to enter, or has just 

exited the region, indicating that the prediction zones are well-aligned between the cameras. 
 

Single-camera counting 

To perform counting of objects by classification for a single camera, each frame is processed as follows: 

1. All detections for the current frame are checked to determine whether the centroid of their bounding box is 

inside the camera’s configured prediction zone. 

2. For each object which has its centroid inside the prediction zone, the temporal object tracking system is used 

to find centroids for that object in previous frames. If the object has at least a configurable minimum number 

of previous detections, and their centroids are all outside the prediction zone, then the system considers that 

object to have ‘just entered’ the prediction zone for the first time and attempts to count it. 

3. When an object is found to have entered the prediction zone for the first time, the combined class prediction 

algorithm described above is used to determine a best overall classification for the object, and the 

corresponding count (for the current camera) of objects of that class is incremented. 

Multi-camera counting 

Because not all objects are necessarily seen or detected by every camera, particularly as they may be hidden from 

view by other objects, a secondary system is used to combine the results of the single-camera counting procedure 
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described above to produce the system’s overall count of objects from each class. This multi-camera counting 

procedure is carried out as follows, for each frame: 

1. The single-camera counting procedure described above is carried out for each camera to update each single-

camera count value for each class of object. 

2. For each class, the maximum count across all cameras is taken as the current value of the overall count for 

that class 

3. For each class, if the overall count for that class has not changed in a certain threshold number of frames (see 

explanation below), a reconciliation step is triggered where each camera’s single-camera count for that class 

is set to the overall count value for that class. 

The reason that the maximum across all cameras is used is because overcounts in a single camera are very rare, 

while undercounts are common, as objects can often be out-of-view of a given camera due to occlusion by another 

object.  

The threshold number of frames used to trigger the reconciliation step for each object class is intended to account for 

the fact that objects may enter the prediction zone in different cameras at different times. If the prediction zones are 

carefully aligned with each other between cameras, this time difference can be minimized, but it can’t be eliminated 

entirely, as objects can differ significantly in size, shape and orientation. As such, this threshold should be set to ensure 

that all objects which have already been counted on any camera will not be counted any later than the threshold 

number of frames on any other camera. In this case, once the number of frames since the last overall count increment 

for that class has passed, the system can assume that any future count increment on any camera will correspond to 

a new object, and so the single-camera counts are reconciled in preparation, so that the next count increment on any 

camera for that object class will immediately cause the overall count for that class to be updated. 

Even with this reconciliation step, an undercount is still possible, but only in situations where many objects of the same 

class pass by the camera station in a consistently rapid enough succession as to not permit reconciliation at any point, 

and no single camera is able to detect all of the objects. In practice, we found that when the prediction zones are 

properly calibrated and the reconciliation frame threshold is correctly set, this is an extremely rare occurrence. 

4.0 Results and limitations 

4.1 Validation method 

The original plan  for validation was an in-plant evaluation of the system, that consisted of counting primals as they 

passed a certain point on the belt for a period of two hours per day over a one week period. This validation method 

was proposed to ensure that the model is as accurate as reported. However, as the system was developed, it became 

apparent that it would be very difficult for a human to accurately validate the model in real-time. The speed at which 

the belt is running, combined with the high number of primals present on the belt at any given time, made the task of 

counting and identifying naked racks in real-time difficult to undertake, even for an expert in primal identification. 
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Instead, the final validation method consisted of recording multiple runs over a week, allowing for model analysis to 

occur over a 6 hour collection period per day. An individual expert in primal identification was then able to review the 

150 real-time simulations collected through slow motion replays in order to determine if the number of naked racks 

identified by the system was correct. This allowed for the team to more effectively allocate time and resources to 

ensure validation was conducted to a high level of accuracy. 

4.2 Validation results and limitations 

The human expert in primal identification evaluated 150 real-time simulation runs that were collected from the system. 

There was a difference of one rack between the expert human count of 1035, with the model counting 1034 naked 

racks passing a certain point on the boning belt. This single error occurred as all six cameras were unable to detect 

the naked lamb rack due to being obscured from all angles at the prediction zone.This indicates that, as far as these 

specific simulation results are concerned, our proposed system is 99.9% accurate at identifying the number of naked 

racks that passed a certain point on the boning belt. The model did not have any limitations in regards to naked lamb 

racks. 
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Figure 9: Captured frames at the prediction zone, showing a naked rack obscured from six cameras. Top, L-R: Camera 

1 & 2, naked rack obscured by bag; Middle, L-R: Camera 3 & 4, naked rack partially obscured by naked loins; Bottom, 

L-R: Camera 5 & 6, naked rack obscured by bag. 

 

 

5.0 Project Outcomes 

5.1 Labelled dataset consisting of 30,000 images of naked lamb racks 

Over a period of six months, 30,000 images of naked lamb racks were captured in an abattoir setting. A wide variation 

of rack images were captured by handheld camera and a mounted system of six cameras. These images were 

reviewed, annotated with bounding boxes, generating a dataset of 30,000 labelled naked racks. This dataset was 

formated to act as an input for a machine learning model. The complete cvs for these 30,000 labelled images is 

attached to this report. 
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5.2 Machine learning model that is able to identify a naked lamb rack on the 

GMP boning belt with 99.9% accuracy at chain speed 

The proposed Machine Learning Model was able to identify the 99.9% of 1035 naked racks that passed through the 

conveyer belt of a processing plant in 150 real-time simulations. 

5.3 Machine learning model that can alert a nearby user if the model is unsure, 

allowing for manual override 

While the system is able to produce highly accurate results, it also incorporates functionality to allow the user to directly 

override the system’s outputs. The touchscreen GUI, when run in the mode designed to display the system’s detections 

and overall counts for each class, is able to alert the user to a detection about which the model indicates lower 

confidence, by highlighting its bounding box in red, and the user is able to override the counts manually using 

touchscreen controls if a primal is incorrectly classified by the system. An illustrative screen capture of the GUI running 

in this mode is shown in Figure 10. 

 

Figure 10: Screen capture of GUI showing bounding boxes and current-session counts for each object class. Note 
the red bounding box indicating a low-confidence detection (in this case, nevertheless a correct one), and the ‘+’ 

and ‘-’ buttons below each count, which allow the user to manually override the system’s automatic counts. 
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6.0 Discussion 

The validation results described in Section 4 demonstrate that the computer vision system is successful at identifying 

naked racks with greater than 99.9% accuracy at chain-speed. There is evidence that the system is more accurate 

than a human expert trying to identify primals in real-time, as it is a very complex task for a single person to detect 

multiple types of primals simultaneously at chain-speed, and furthermore the system is able to view the belt from 

multiple angles simultaneously and cross-reference between those angles in a way that would be impossible for a 

human. 

Moreover, the success of this development corroborates the value that computer vision and machine learning 

techniques are able to provide to the operations of an abattoir boning room. Processors can benefit from these 

technologies as they bring objective measurement, alleviate risks, and help reduce labour costs.   
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7.0 Conclusions / Recommendations 

In conclusion, machine learning and computer vision technologies can be employed in an abattoir environment to 

detect naked lamb rack primals with a high degree of accuracy.  These methods show strong evidence in terms of 

applicability to boning room automation, analysis, and quality assurance tasks generally, with the potential to increase 

the reliability of abattoir processes and reduce labor costs. 

We recommend that further research and development be undertaken to bring these technologies to further 

applications which have direct and specific benefit to processors. In our opinion, these technologies could have 

immediate value in the following areas: 

◆ Automatic Sorting: a machine learning/computer vision system could be developed to control mechanical 

systems such as belt diverters to enable automated sorting of meat cuts in certain situations. 

◆ Supply Chain Traceability: with some expansion of scope, potentially including more cameras and processing 

nodes, the technologies used in this project could be applied to the problem of boning room traceability to track 

an individual carcase as it is transformed into primals and individual cuts. 

◆ Quality Assurance: a machine learning/computer vision system could be developed to identify and count 

objects once boxed, and alert users to the presence of foreign objects 
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9.0 Appendices 

Appendix 1 - Initial Sample of Images 

 

  

 
 

 
 

 

Figure 11: Six examples of naked lamb rack images collected in the plant throughout different days on one conveyor  
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Appendix 2 - Sample Images with Bounding Box Annotations  

 

Figure 12: Image gmp_20211123_132448_730_eFNN_cam2_main_belt_class_change.png has four objects 

annotated -  three naked_loins (red rectangles) and one naked_rack (blue rectangle). 

 

Figure 13: Image gmp_20210810_114108_9Z8j.png has two objects annotated - one naked_rack (blue rectangle) 

and one naked_loin (red rectangle).  
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Appendix 3 - Sample Images with Bounding Box Annotations 

 

Figure 14: Image gmp_20210810_103518_Zr47.png has three objects annotated -  two naked_racks (blue rectangles) 

and one naked_loin (red rectangle). 

 

 

Figure 15: Image gmp_20210810_113658_o6Vy.png has two objects annotated - one naked_rack (blue rectangle) 

and one naked_loin (red rectangle).  
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Appendix 4 - Example of data augmentation method: randomly cropped copies 
of the same image. 

Figure 16: Nine different augmented copies of image gmp_20210810_102513_Dxp7.png  
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Appendix 5 - Sample of csv with labels 

 

 

Filename 

Width Height Object xmin ymin xmax ymax 

gmp_20211202_114612_693_3PG4

_cam6_main_belt_class_change.pn

g 

1024 768 naked_rack 170.5 136.9 345.9 190.7 

gmp_20211202_114612_693_3PG4

_cam6_main_belt_class_change.pn

g 

1024 768 naked_rack 345.4 175.4 511.6 216 

gmp_20211202_114612_693_3PG4

_cam6_main_belt_class_change.pn

g 

1024 768 naked_rack 180.5 184.8 382.3 231 

gmp_20211202_114609_695_JqRu

_cam4_main_belt_class_change.pn

g 

1024 768 naked_rack 660 1.4 829.2 50 

gmp_20211202_114606_589_MKrQ

_cam5_main_belt_class_change.pn

g 

1024 768 naked_rack 496.2 240.6 871.5 410.6 

gmp_20211202_114543_477_SGrP

_cam2_main_belt_class_change.pn

g 

1024 768 naked_rack -4.2 285.4 202.4 507.4 

gmp_20211202_114543_477_SGrP

_cam2_main_belt_class_change.pn

g 

1024 768 naked_rack 888.6 249 1026.5 360.6 

gmp_20211202_114543_477_SGrP

_cam2_main_belt_class_change.pn

g 

1024 768 naked_rack 944.2 201.6 1026 296.1 

gmp_20211202_114526_457_ERC

u_cam2_main_belt_class_change.p

ng 

1024 768 naked_rack 685.8 206.6 883.2 407.5 

gmp_20211202_114526_457_ERC

u_cam2_main_belt_class_change.p

ng 

1024 768 naked_rack 922.8 196.6 1024.1 254.6 

gmp_20211202_114526_457_ERC

u_cam2_main_belt_class_change.p

ng 

1024 768 naked_rack 860.4 291.2 1026.9 506 
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