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1.0 Executive Summary 

The aim of this Proof of Concept (PoC) project was to evaluate the capability of the Rubens spectral scanner to 

detect contaminants in red meat. The Rubens scanner, developed by Rubens Technologies to assess fruit quality 

and maturity, is based on a combination of absorbance and fluorescence spectroscopy, from the UV to the near-

infrared spectral range.  

The utilisation of optical fluorescence has been proposed as a tool to evaluate meat quality, authenticate beef, and 

detect faecal contamination in carcases. This previous research, and the availability of the Rubens scanner, 

motivated this project, with the aim of verifying that a handheld spectral system can be used to detect contaminants, 

and of building a roadmap of extending this technology to line scanners.   

This project has been carried out with the assistance of Cedar Meats Australia, which provided trimmed samples 

from lamb and mutton carcases. The samples had a variety of contaminants, including Faeces, Urine, Grass Seeds, 

Ingesta and Wool. Clean samples were also scanned to provide a baseline. The samples were sourced in two 

occasions from Cedar Meats facilities, and scanned at Rubens Technologies’ premised on the same day of 

collection.  

The data was reduced by identifying wavelength bands in the fluorescence and absorbance spectra, that contains 

features that are specific to each contaminant or group of contaminants. In this way, the reduced data can be used 

directly for rapid contaminant identification. In addition, and perhaps more importantly, identified bands in the spectra 

could be used to design optical filters for a future line scanner based on a combination of spectral sensing and 

machine vision.   

The results outline the ability of the Rubens scanner to detect the vast majority of contaminants, in the range of 

samples that was measured. Detection of ingesta, grass seed, and wool appears to be possible from the spectra 

alone, after identification of the relevant bands. Specific fluorescence bands for urine and faeces have also been 

identified, but are not sufficiently separated from other features to enable full identification from spectra alone. The 

spectral data shows candidate bands that suggest a good identification is possible, and can be used in conjunction 

with a vision system for fully automated identification of contaminants in a line scanner. 

The conclusions above suggests a practical way to approach the development of a line scanner. Three of the key 

requirements of a line scanner system are: 1) Being more cost-effective than a hyperspectral imaging system. 2) 

Being able to achieve higher sensitivity (i.e. able to detect small quantities of contaminant) than a hyperspectral 

system and 3) Generating a manageable amount of data, both for processing and for auditing purposes.  

The concept of such a line scanner system was developed in the second part of this project, outlining its main 

technical characteristics, estimated costs, and modes of utilisation. The concept is meant to be a starting point for 

the development of a prototype, subject of a draft Stage 3 application. While the details of the prototype will require 

the critical input of the industry, a few of the technical characteristics that we have outlines in this report will ensure 

cost-effectiveness and flexibility of deployment, minimising costs associated with installation and personnel training. 

In conclusion, the technical work described in this report has produced important information regarding the type of 

detection and the wavelength bands that are likely to produce a good identification of contaminants. This has 

produced a baseline of data which informs the applicability of this technology to line scanners. The latter will be the 

subject of a forthcoming draft application for a Stage 3 submission. 



 

4 

AMPC.COM.AU 

2.0 Introduction 

Rubens Technologies have developed a multi-spectral hand-held scanner and line scanner for the horticulture 

industry currently being used to assess fruit quality (pre-harvest) and fruit grading (post-harvest). The device is 

based on a miniaturised spectral sensor capable of detecting light spectrum in three modalities:  

1) Fluorescence 

2) VIS Reflectance 

3) NIR Reflectance 

The purpose of this research project was to pilot the Rubens scanner, evaluate its ability to detect contaminants in 

red meat, and provide a plan for extending this technology to line scanners, assessing its technical feasibility and 

estimated costs. The scope of the project was limited to the use of the existing scanner, for a PoC work.  

Optical fluorescence has been proposed as a tool to evaluate meat quality (Islam et al., 2019), authenticate beef 

(Aït-Kaddour et al., 2017) and detect faecal contamination in carcases (Gorji et al., 2022, Veritide system), among 

other applications.  A potential advantage of optical fluorescence, as opposed to near-infrared spectroscopy, is that 

fluorescence is not affected by moisture. Water is always the most prominent feature in near-infrared spectra (see, 

e.g. Chapter 16 and 17 of Burns & Ciurczak, 2008) which may hinder the differentiation of different substances with 

similar moisture content. Prominent fluorescence features of red meat, and of contaminants that may be presents, 

justify this study for contaminant identification. In addition, since the Rubens sensor can detect fluorescence and 

absorbance at the same time, this technology t can provide a flexible tool for the identification of different types of 

contaminants in all types of red meat. 

3.0 Project Objectives 

The project objectives as specified in the signed Agreement are: 

    1. Demonstrate to AMPC staff the working functionality of the concept(s) through pilot test of our current hand-

held scanner on carcases to identify what contaminants can be detected and at what level. 

    2. Demonstrate the applicability of pilot results (obtained with a hand-held device) to a line scanner detection 

system (on paper and through simulations/animations) 

    3. Develop indicative targeted $RRP 

    4. Draft a Stage 3 application submission, which includes an indicative indication of Stage 4+ and 

commercialisation plan. The draft will specifically address the R&D required to translate the concept to line scanners 

and the path towards future concept automation 

    5. Provide literature that substantiates that the proposed platform is likely to succeed. 

4.0 Methodology 

4.1 Samples 

Lamb and mutton meat samples were sourced from Cedar Meats Australia (Global Meat Exports Pty Ltd) on 20th 

September and 6th October 2022 and measured on the same day of collection. The available contaminants on these 

samples were: 1) Faeces, Urine, Grass Seeds, Ingesta and Wool. Clean samples were also scanned to provide a 
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baseline. The samples were inserted into individual bags, labelled and kept refrigerated until the measurements. 

Two examples of the samples, as obtained from Cedar Meats is shown in Figure 1. 

  

Figure 1. Examples of meat samples used in this project. Left: lamb sample sourced on 20th September. Right: 

Mutton sample sourced on 6th October.  

4.2 Rubens scanner and data acquisition 

The samples were scanned with the Rubens Technologies handheld sensor. The scanner is capable of detecting 

optical fluorescence, visible light reflectance and near-infrared reflectance with a single spectrometer. For 

fluorescence measurements an excitation LED with near-monochromatic emission at 365 nm is used; for visible 

reflectance, the light source is a white LED with broadband emission in the range 400-700 nm; and for near-infrared 

reflectance, the light source is an LED with broadband emission in the range of approximately 650-1050 nm. During 

a scan, each light source operated in turn, with sample emissions captured in the wavelength range of approximately 

400-900 nm. The data is background corrected by subtraction with a scan captured in the absence of LED lights. 

The Rubens scanner is originally designed to scan pre-harvest fruit. Its design include a “fruit shroud”, that is an 

opaque, silicone-based cover, designed to avoid the detection of sunlight when measuring in the field (see left pane 

of Figure 2). The purpose of this project was to explore the feasibility of the technology to contaminant detection in 

meat in a cost-effective way. For this reason, we minimised changes to the scanner, essentially limited to removing 

the fruit shroud. As a consequence, all measurements were taken in a dark environment, to minimise ambient light 
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detection. A photo of a typical scan configuration is shown in the right pane of Figure 2 (as noted, the photo is for the 

purpose of illustration only. The actual scans were acquired in a dark environment).  

The scanner was adjusted so that each sample was located approximately in the same plane of measurement. Each 

sample was scanned multiple time around the area of interest, with a minimum of 5 scans, and the individual scans 

were averaged. 

 

 

Figure 2. Left: Picture of the entire Rubens scanner, including the fruit shroud (dark grey) and its docking station. 

Right: Rubens scanning of a meat sample. The shroud was removed to allow for a close-up scan. Note that this 

photo was taken for the purpose of illustration only. The actual scans were taken in a dark environment, as 

explained in the text. 

4.3 Data analysis 

An overview of the data collected is shown in Figure 3. On the left-hand side we show the optical absorbance 

spectra in the visible and near-infrared region. On the right-hand side the corresponding fluorescence spectra. The 

data is colour-coded for the type of contaminant that was measured, including two clean sample in the fat and lean 

region respectively. 

Starting with a qualitative analysis, we noted that: 

◆ Most contaminants display unique or characteristic spectral features that can be used for identification. 
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◆ The strength of the characteristic spectral features depends on the quantity of the contaminant being 

scanned, and the type of cut/region of the underlying sample. The fat regions of the sample, due to the lighter 

colour, have a much stronger reflectance and fluorescence compared to the lean region. This, in turns, has 

an effect on the strength of the spectral features of the contaminants in each region. 

  

Figure 3. Left: Absorbance spectra in the visible and near-infrared region. Right: Corresponding optical 

fluorescence spectra. 

For the purpose of this preliminary project, where we aim at a qualitative identification of contaminants, the different 

strength of the spectral feature is not a serious issue. We anticipate however, that this must be accounted for in a 

fully automated system (Stage 3 proposal).  

For the purpose of identification, we selected the spectral bands that were considered more representative of the 

type of contaminant. Depending on the type of contaminant, these bands could be selected in the absorbance 

spectra, fluorescence spectra, or both. The purpose of this band selection is two-fold: 1) It simplify the analysis and 

enables a rapid visual identification of the type of contaminant in a scatter plot (see below for details). 2) It mimics 

band-pass filters that could be physically added to a vision system in a future development of this prototype.   

5.0 Project Outcomes 

The key project outcomes are as follows: 

◆ Meat and meat contaminants samples have distinctive spectral features in absorbance and optical 

fluorescence. 

◆ These distinctive features can be used for contaminant identification in the lamb and mutton samples that 

were scanned with the Rubens sensor. 
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◆ Rapid identification of contaminant can be achieved by defining appropriate contaminant indexes, which 

quantify the amount of fluorescence (or absorbance) in the relevant wavelength band for each contaminant.  

◆ Many contaminant features significant chlorophyll fluorescence, which can be readily detected by the Rubens 

sensor. 

◆ The contaminant indexes, calculated in post-processing on the spectral data, provide full discrimination of 

ingesta, wool and some grass seed contamination using spectral data alone. The discrimination of urine and 

faeces using contaminant indexes on spectral data is only partial and it will require imaging in addition to 

spectroscopy. 

◆ The definition of contaminant indexes can be translated into a practical way of developing a line scanner, 

based on the selective acquisition of specific wavelength bands using optical filters and conventional 

cameras. 

◆ The concept of a line scanner, which take advantage of the key learnings of this project has been proposed 

and a roadmap for further development has been outlined. 

6.0 Discussion 

6.1 Experimental results 

The data analysis below has been divided into the different contaminant type, providing a visual assessment and a 

discussion of the ability of the system to detect that specific contaminant type, and further improvement that are 

envisaged in a future development. A common trait that was observed in all samples is the ability of our system to 

detect residual chlorophyll in contaminants. In addition to other identifiers, chlorophyll fluorescence and absorbance 

is one of the main identifier that enables contaminant identification 

Ingesta 

Most ingesta could be identified by chlorophyll fluorescence around the 650-750 nm band, alongside chlorophyll 

absorption in the absorbance spectra (centred around 680 nm). The amount of fluorescence and absorption, 

suitably normalised to the baseline, were combined in tow indicators that we called “Ingest Index 1” and “Ingesta 

Index 2” respectively. A scatter plot of these two indicator shows that the ingesta samples are clearly separated 

from the rest, including clean fat and lean samples.  
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Figure 4. Scatter plot of the Ingesta 

Indexes as defined in the text. The 

ingesta samples are marked in light green 

and are clearly separated from the other 

samples using the Ingesta Indexes. For 

clarity, all data points other than ingesta, 

clean lean and clean fat data points are 

shown as semi-transparent. 

Grass Seed 

We noted that some (not all) grass seeds produce chlorophyll fluorescence, likely due to the type of seed. In all 

samples we had, the grass seed were embedded in fat tissue and depending on their size/density, their 

identification was made difficult by the high reflectance and fluorescence of fat tissue. Nevertheless, all samples 

displayed increased absorbance around the 430 nm band (blue). This absorbance band, along with the chlorophyll 

fluorescence band were normalised into Grass Seed Index 1 and 2 for a scatter plot, as shown in Figure 5. 

 

Figure 5. Scatter plot of the Grass Seed 

Indexes as defined in the text. The seed 

samples are marked in light blue and are 

clearly separated from the other samples 

except for the fat tissue. For clarity, all 

data points other than grass seed, clean 

lean and clean fat data points are shown 

as semi-transparent. 

Scatter plot using Grass Seed Index 1 and 2 enables the separation between the Grass Seed samples and the rest, 

with the exception of clean fat tissue. Since, as noted, all grass seeds were found in fat tissue, the effect of the 

surrounding tissue affects the ability to discriminate this type of contaminant. When chlorophyll fluorescence is 
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present there is good discrimination. In other cases, the detection will have to be aided by machine vision in the 

bands we identified.  

Wool 

Most, but not all, wool samples produced very strong fluorescence under UV illumination. This seems again to be 

ascribed to chlorophyll, likely residual grass on the wool. Wool indexes based on chlorophyll fluorescence and 

absorbance, as in the scatter plot of Figure 6, are able to discriminate wool compared to other contaminants. In fact, 

the fluorescence is strong enough to be visible by eye (see Figure 7), which suggests that visual identification by 

machine vision could be a valid technology, using a suitable wavelength filtering.  

  

Figure 6. Wool samples (dark red) fall on the right-hand 

side of the scatter plot of Wool Indexes, mainly identified 

by chlorophyll fluorescence. Ingesta samples are in a 

similar location, but can be unambiguously identified 

using the Ingesta Indexes and visual assessment. 

  

Figure 7.  Left: Strong red fluorescence of wool samples under UV illumination (a UV filter was placed on the 

camera for this photo). Right: Same sample under normal illumination. The sample is from a mutton. 



 

11 

AMPC.COM.AU 

Urine 

Urine identification was more complicated, due to the small quantities of urine contaminant that was found on the 

samples we scanned. We identified a small shift in one of the fluorescence peak, compared to most other samples 

from which we defined Urine Indexes plotted in Figure 8. These indexes appear to isolate the Urine samples in the 

top-middle of the scatter plot. However, since only two samples were measured, we cannot draw definite conclusion 

on this approach. 

 

Figure 8. Scatter plot of the Urine Indexes 

as defined in the text. The seed samples 

are marked in light blue and are clearly 

separated from the other samples except 

for the fat tissue. For clarity, all data 

points other than urine, clean lean and 

clean fat data points are shown as semi-

transparent. 

Faeces 

We were able to scan only one sample containing pellet-like faeces contamination in lamb meat. Therefore the data 

from the faeces is qualitatively very different from the other samples, whereby the signal from the surrounding tissue 

is essentially absent. The faeces samples are clearly visible and characterised by a stronger absorbance on most 

visible and near-infrared bands (see left pane of Figure 3). We did not detect chlorophyll fluorescence on this 

sample, and we expect that a combination of machine vision and fluorescence can be the best approach to identify 

faeces contamination. 

6.2 Applicability of the pilot results to a line scanner 

The main results of the technical component of the pilot work are: 

• The combination of optical fluorescence and absorbance (or reflectance) provide a rich information to detect 

a number of contaminant, at least in the lamb and mutton samples that were scanned. 

• In some cases, the contaminant identification can be done using the spectral information alone. In other 

cases, it was recognised that visual information is required to achieve accurate identification. 

• The identification of the different contaminant was achieved by identifying relevant spectral bands that are 

characteristic of each contaminant. Based on these spectral bands, whether in fluorescence, absorbance, or 

both, we identified a number of “Contaminant Indexes”, for instance “Wool Index” or “Grass Seed Index”, 

etc. For instance, the Wool Index is calculated from the fluorescent emission in the 650-750 nm spectral 

range normalised to a baseline. 
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• The spectral bands, and the relative indexes, are calculated in post-processing, by selecting a window in the 

acquired spectra.  

The conclusions above suggests a practical way to approach the development of a line scanner. Two of the key 

requirements of a line scanner system are: 1) Being more cost-effective than a hyperspectral imaging system. 2) 

Being able to achieve higher resolution (i.e. able to detect small quantities of contaminant) than a hyperspectral 

system and 3) Generating a manageable amount of data, both for processing and for auditing purposes.  

The three objective above can be achieved by an array of conventional, low-cost RGB cameras. Each camera will 

be equipped with an optical filter designed to cover one specific spectral band. The system will feature an array of 

LEDs illuminators, specifically chosen to emit at specific wavelengths. The combination of illumination and imaging 

detection, when suitably timed, will provide an effective multi-spectral system, specifically designed for contaminant 

detection, at a fraction of the cost of a conventional multi-purpose hyperspectral system. 

For instance a combination of 6 different LED types and 6 RGB cameras with different bandpasses will produce an 

effective 6x6=36 channel spectral imaging system with a combination of absorbance and fluorescence detection. 

Each acquisition will therefore produce 36 independent images of a carcase. These images can then be combined 

into the contaminant indexes we have identified in stage 2. Note that this latter process is commonly employed to 

generate indexes of importance for agriculture from satellite imagery (see for instance the Tona & Bua, 2018). 

Figure 9 shows the concept of a line scanner based on the results of this project. The scanner can be mounted on a 

moveable stage on a vertical rack to scan a carcase from top to bottom. It can also be mounted in a fixed 

configuration to image meat parts in a line. In both cases, the requirements on the imaging system and, most 

importantly, on the software stack are less strict enabling high operation speed. Typical motion speed can exceed 

1m/sec.   

 

 

Figure 9. Line scanner concept. 
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6.3 Indicative target $RRP, Stage 4+ and commercialisation plan 

The prototype described above is to be considered a concept only. We anticipate that the actual prototype will be 

developed in close consultation with processors, to make sure the approach is fit for purpose and provides the 

functionalities required to alleviate labour costs and maximise return on investment.  

What we have described is the technical functionality of the prototype that will achieve the objectives of 1) Cost-

effectiveness, 2) High-speed and sensitivity, and 3) manageable size of the data produced. On this basis, a basic 

unit comprising of 6 cameras, LED source lights, onboard computer (with machine vision included), monitor, 

dashboard, mounting rack mounted on castors, motion stage, and battery could retail for approximately $15,000 

(excluding installation) at the current costs. Note that the battery is required for standalone operations, where the 

machine is moved by an operator. Fixed systems could deliver savings compared to the battery version.  

The approach delineated here also ensures system modularity. Multiple units can be deployed and their results 

pooled together for further analytics and reporting, providing additional benefit to the processing operation. Another 

advantage of the modularity is the ability to upgrade the system, for instance adding different machine vision 

modules (i.e. lamb vs beef), specific optical filters and remote operation support.  

The system is designed to require minimal operator input, thus minimising the costs required to train new operators. 

The concept design will also ensure that updates and troubleshootings can be carried out online, thus minimising the 

costs and turnaround time required for any of these operations. 

In light of recent industry trends, the modular system is also amenable of “Hardware-as-a-Service” commercial 

model, where the system, including access to machine vision, is leased on a subscription basis.  

The cost structure would be different in this second case, which however will reduce the CAPEX investment of the 

plant. As mentioned, the form factor and functionality of the system will have to be developed together with 

processors, so that all required functionalities are included, but nothing more, to keep the costs at a minimum. We 

plan to carry out a consultation with the processors at the beginning of a Stage 3 project. This consultation will define 

the directions of the development, but also the commercial strategy.  

7.0 Conclusions / Recommendations 

The data acquisition and analysis discussed in this report, outlines the ability of the Rubens scanner to detect the 

vast majority of contaminants, in the range of samples that was measured. The Rubens scanner has been 

specifically designed to detect fluorescence of plant pigments and it is therefore well tuned to detect chlorophyll 

fluorescence, which appears to be present in most contaminants.  

The approach we followed, was to identify specific wavelength bands in the fluorescence and absorbance spectra, 

that could be used for contaminant identification. This approach enables a rapid visual identification of the data. In 

addition, and perhaps more importantly, identified bands in the spectra could be used to design optical filters for a 

future line scanner based on a combination of spectral sensing and machine vision.   

Detection of ingesta, grass seed, and wool appears to be possible from the spectra alone, after identification of the 

relevant bands. Detection of urine and faeces will likely require an imaging system. The spectral data shows 

candidate bands that suggest a good identification is possible, and could be used in conjunction with a vision system 

for fully automated identification of contaminants in a line (the Rubens sensor is designed for spot measurement and 

it does not have an imaging system).  
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The conclusions above suggests a practical way to approach the development of a line scanner, in order to meet 

key requirements of cost-effectiveness, sensitivity and easy implementation. The concept of such a line scanner 

system was developed in the second part of this project, outlining its main technical characteristics, estimated costs, 

and modes of utilisation. The concept is meant to be a starting point for the development of a prototype, subject of a 

draft Stage 3 application.  

In conclusion, the technical work described in this report has produced important information regarding the type of 

detection and the wavelength bands that are likely to produce a good identification of contaminants. This has 

produced a baseline of data which informs the applicability of this technology to line scanners. The latter will be the 

subject of a forthcoming draft application for a Stage 3 submission. 
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